On estimation algorithms for ordinary differential equations
نویسندگان
چکیده
منابع مشابه
Parameter estimation of ordinary differential equations
This paper addresses the development of a new algorithm for parameter estimation of ordinary differential equations. Here, we show that (1) the simultaneous approach combined with orthogonal cyclic reduction can be used to reduce the estimation problem to an optimization problem subject to a fixed number of equality constraints without the need for structural information to devise a stable embe...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Efficient algorithms for solving the fractional ordinary differential equations
Fractional calculus and fractional differential equations are popular in describing anomalous diffusion, ground water flow and transport, and the price fluctuation in finance, etc. Some numerical methods are developed to solve the fractional ordinary differential equations. However, for most of these methods it seems that we always have to make a trade-off between efficiency and accuracy becaus...
متن کاملComputer Algebra Algorithms for Linear Ordinary Differential and Difference equations
Galois theory has now produced algorithms for solving linear ordinary differential and difference equations in closed form. In addition, recent algorithmic advances have made those algorithms effective and implementable in computer algebra systems. After introducing the relevant parts of the theory, we describe the latest algorithms for solving such equations.
متن کاملError Estimation for Collocation Solution of Linear Ordinary Differential Equations
This paper is concerned with error estimates for the numerical solution of linear ordinary differential equations by global or piecewise polynomial collocation which are based on consideration of the differential operator involved and related matrices and on the residual. It is shown that a significant advantage may be obtained by considering the form of the residual rather than just its norm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANZIAM Journal
سال: 2008
ISSN: 1445-8810
DOI: 10.21914/anziamj.v50i0.1363